top of page

Les graphes

​

Un graphe est un outil permettant de représenter des objets (sommets) et des liens ou interaction entre ces objets (arrêtes). Exemple : réseau SNCF, villes et routes, réseaux (internet), labyrinthes (les graphes peuvent permettre de trouver les sorties du labyrinthe).

 

​

I) L'exemple du berger

 

Un berger a un loup, une chèvre et un choux. En présence du berger, la chèvre ne mange pas le chou et le loup ne mange pas la chèvre. Pour traverser une rivière, le berger ne peut transporter qu'un de ses compagnons à la fois. Comment doit-il faire ?

 

Il y a 4 personnages et deux états possibles. Il y a 16 combinaisons possibles.

Chaque combinaison sera simplement représentée par l'état sur la ligne de départ.

Chaque combinaison est un sommet, chaque arrête est un trajet en barque.

 

Combinaisons impossibles :

-choux/chèvre

-loup/chèvre

-loup/berger

-choux/berger

-choux/chèvre/loup

-berger seul

 

​​

​

​

​

​

​

​

​

​

​

​

​

​

 

 

 

 

 

II sortir d'un labyrinthe

 

Un labyrinthe peut être décrit par un graphe, les croisements étant les objets placés aux sommets, et les couloirs les liens entre ces sommets.

 

 

Entrée A ; Sortie Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) A

2) AB

3) ABC

ABM

4) ABCD

ABCK

ABM

5) ABCDK x

ABCDE

ABCK

ABM

6) ABCDEF x

                                                                                                        ABCDEG                                      Parcours d'un graphe en profondeur

ABCK

ABM

7) ABCDEGH x

ABCDEGI

ABCK

ABM

8) ABCDEGIJ x

ABCK

ABM

9) ABCKL x

ABCKD  x

ABM

10) ABMN  x

    ABMZ   

 

 

x = Possibilité éliminée

 

 

1) A

2) AB

3) ABC

ABM

4) ABCD

                                                                                                  ABCK                                        Parcours d'un graphe en largeur

ABM

5) ABMN x

ABMZ

ABCK

ABCD

 

 

Le parcours d'un graphe en largeur traite d'abord les possibilités les plus courtes. Il permet de trouver le chemin le plus court pour sortir.

Le parcours en profondeur, pour ne pas tourner en rond, doit interdire de repasser par des sommets déjà utilisés.

faf24f_cf332ce3ab424e6cae8d7a85c299f41e_
faf24f_0224cb60f5da457a97a5c59d556382f3_

©2019 par Projet ISN Bernard Pallissy 2019/2020 Clément Tom. Créé avec Wix.com

bottom of page